证明:在CB的延长线上取点E,使BE=AB,连接AE∵BE=AB∴∠BAE=∠E∴∠ABC=∠BAE+∠E=2∠E∵∠ABC=2∠C∴∠E=∠C∴AE=AC∵AD⊥BC∴ED=CD (三线合一)∵ED=BE+BD∴ED=AB+BD∴CD=AB+BD