设函数f(x)在a的极限为A,所谓的函数极限的局部保号性就是A的符号能保证函数f(x)本身在a 的附近的符号与A相同。这样就可以用极限很容易证明出函数的不等式。
保号性是指满足一定条件(例如极限存在或连续)的函数在局部范围内函数值的符号保持恒正或恒负的性质。
扩展资料:
有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数的极限值。
数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N。
当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:
第一:因式分解,通过约分使分母不会为零。
第二:若分母出现根号,可以配一个因子使根号去除。
第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)
参考资料来源:百度百科——保号性
函数极限局部保号性是指满足一定条件(例如极限存在或连续)的函数在局部范围内函数值的符号保持恒正或恒负的性质。
函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。
扩展资料:
求函数极限的方法:
1、利用函数连续性:
就是直接将趋向值带入函数自变量中,此时要要求分母不能为0。
2、恒等变形
当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:
第一:因式分解,通过约分使分母不会为零。
第二:若分母出现根号,可以配一个因子使根号去除。
第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)
当然还会有其他的变形方式,需要通过练习来熟练。
3、通过已知极限
特别是两个重要极限需要牢记。
4、采用洛必达法则求极限
洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。
参考资料来源:百度百科-函数极限
参考资料来源:百度百科-保号性
本视频是高等数学系列教学视频之一,目标让喜欢数学的朋友都能理解微积分的基本理论,想进一步学习高等数学及考研,请参看数学分析系列教学视频相关内容。每周周二四六更新。
设函数f(x)在a的极限为A,所谓的函数极限的局部保号性就是A的符号能保证函数f(x)本身在a 的附近的符号与A相同。这样就可以用极限很容易证明出函数的不等式。