在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )

2025-02-23 12:35:51
推荐回答(1个)
回答1:

∵2acosC+ccosA=b
∴根据正弦定理SinAcosC+sinAcosC+sinCcosA=sinB
∴SinAcosC+sin(A+C)=sinB
∴SinAcosC=0
∵A,B,C为三角形内角,
∴sinA≠0,
∴cosC=0
∴C=90°
∴sinB=cosA
∴sinA+sinB=sinA+cosA=
2
2
2
sinA+
2
2
cosA)=
2
sin(A+
π
4
)≤
2

∴sinA+sinB的最大值是)
2

故答案选C.