令F(x)=tanx-x+x^3 /3F'(x)=(secx)^2-1+x^2=(tanx)^2+x^2>=0F(x)在定义域在区间(0.π/3)上单调递增,F(x)>F(0)F(0)=0所以有:F(x)>0即:tanx-x+x^3 /3>0亦即:tanx>x-(x^3/3),x属于(0.π/3)