x^2z^3+2(y^2)z+4=0微分得2xz^3dx+3x^2z^2dz+4yzdy+2y^2dz=0,在点(2,0,-1)处上式变为-4dx+12dz=0,即dx-3dz=0,分别用x-2,y,z+1替换dx,dy,dz得所求切平面方程为x-2-3(z+1)=0,即x-3z-5=0.所求的法线方程是x-2=y/0=(z+1)/(-3).