∫(上限1,下限-1)(1+x)√(1-x^2)dx=

2024-11-28 17:36:52
推荐回答(3个)
回答1:

∫(上限1,下限-1)(1+x)√(1-x^2)dx
=∫(上限1,下限-1)√(1-x^2)dx+∫(上限1,下限-1)x√(1-x^2)dx(奇函数,积分是0)
=∫(上限1,下限-1)√(1-x^2)dx (偶函数积分)
=2∫(上限1,下限0)√(1-x^2)dx

x = sinθ,dx = cosθ dθ √(1-x^2)=sinθ

=2∫(上限1,下限0)√(1-x^2)dx
=2∫(上限π/2,下限0)sinθcosθ dθ
=∫(上限π/2,下限0)sin2θ dθ
=-(1/2)cos2θ (上限π/2,下限0)
=1

回答2:

肯定正确

回答3:

令x = sinθ,dx = cosθ dθ
√(1 - x²) = √(1 - sin²θ) = cosθ
∫ (1 + x)/√(1 - x²) dx
= ∫ (1 + sinθ)/cosθ · cosθ dθ
= ∫ (1 + sinθ) dθ
= θ - cosθ + C
= arcsin(x) - √(1 - x²) + C