在CB上取点E,使CE=CA,连结AE,又∵∠ACB=60°,∴△ACE是正△,∴∠AEC=60°,∵△ACD≌△ECD∴AD=DE=BE,设∠DAE=X,则∠DEA=X,∠BDE=2X,∠DBE=2X,∠DEC=4X,即∠AEC+∠AED=60+X=4X,解得X=20°∴∠BAC=60°+20°=80°