令t=x-1则x=t+1
f(t)=(t+1)^2+2(t+1)-5
=t^2+2t+1+2t+2-5
=t^2+4t-2
故f(x)=x^2+4x-2
求采纳,不懂请追问。
f(x-1)=x^2+2x-5
=(x^2-2x+1)+4x-6
=(x-1)^2+4(x-1)-2
f(x)=x^2+4x-2
设t=x-1,x=t+1
f(t)=(t+1)^2+2(t+1)-5=t^2+4t-2
即有f(x)=x^2+4x-2
f(x-1)=(x-1+1)^2+2(x-1+1)-5
即f(x)=(x+1)^2+2(x+1)-5
f(x)=x^2+2x+1+2x+2-5
f(x)=x^2+4x-3
把x 1代入该式子即f(x 1-1)=(x 1)^2 2(x 1)-5