二重极限的性质

2025-02-26 10:20:11
推荐回答(1个)
回答1:

只要二元函数连续,极限的四则运算,无穷小的替换和无穷小的性质,重要极限,洛必达都是可以用的,而多元初等函数在其定义域内都是连续的,所以这些性质基本上都能用。只有在函数的间断点处,二元函数的极限有可能不存在,例如(x,y)趋于(0,0)时,lim(x+y)/(x-y)不存在,这和一元函数是不同的。