回归方程:是根据样本资料通过回归分析所得到的反映一个变量(因变量)对另一个或一组变量(自变量)的回归关系的数学表达式。回归直线方程用得比较多,可以用最小二乘法求回归直线方程中的a,b,从而得到回归直线方程。
原理
对变量之间统计关系进行定量描述的一种数学表达式。
指具有相关的随机变量和固定变量之间关系的方程。
回归直线方程
回归方程是根据样本资料通过回归分析所得到的反映一个变量(因变量)对另一个或一组变量(自变量)的回归关系的数学表达式。回归直线方程用得比较多,可以用最小二乘法求回归直线方程中的a,b,从而得到回归直线方程。
如:在一组具有相关关系的变量的数据(x与Y)间,通过散点图可观察出所有数据点都分布在一条直线附近,这样的直线可以画出许多条,而其中的一条最好地反映x与Y之间的关系,即要找出一条直线,使这条直线“最贴近”已知的数据点,记此直线方程为(如右所示,记为①式)
这里在y的上方加记号“^”,是为了区分Y的实际值y,表示当x取值xi=1,2,……,6)时,Y相应的观察值为yi,而直线上对应于xi的纵坐标是
①式叫做Y对x的
回归直线方程,相应的直线叫做回归直线,b叫做回归系数。要确定回归直线方程①,只要确定a与回归系数b。
回归方程的有关量:e.随机变量 ^b.斜率 ^a.截距 —x.x的数学期望 —y.y的数学期望 R.回归方程的精确度