f(x)=x^2+lnx在[1,e]上单调增,所以最大值是f(e)=e^2+1,最小值是f(1)=1
当x=1时,g(x)=f(x)=1.当x>1时g(x)的增率高于f(x),所以当x属于(1,+∞)时,函数的图像在g(x)=2/3x^3+1/2x^2的下方
解:
(1)
f(x)=x^2+lnx
f'(x)=2x+(1/x)
令f'(x)>=0
解得x∈(0,正无穷)
所以f(x)在(0,正无穷)上是增函数
所以当x属于[1,e]时
f(x)min=f(1)=1
f(x)max=f(e)=e^2+1
(2)证明:
g(x)=2/3x^3+1/2x^2
g'(x)=2x^2+x
令g'(x)>=0
解得x∈(负无穷,0][1/2,正无穷)
所以g(x)在(1,正无穷)是增函数
g(x)min=g(1)=2/3+1/2=7/6>f(1)=1
所以函数的图像在g(x)=2/3x^3+1/2x^2的下方
求导,得f'(x)=2x+1/x,在所给的区间内恒大于0,所以函数单调递增,所以最大值是f(e),最小值是f(1)
f(x)=x²+lnx
则:
f'(x)=2x+(1/x)
则函数f(x)在[1,e]上是递增的,则:
函数f(x)在[1,e]上的最大值是f(e)=e²+1
最小值是f(1)=1