关于爱因斯坦相对论中的钟慢尺缩的问题?

2024-11-27 15:36:54
推荐回答(5个)
回答1:

惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性,而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个关性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间。在今后的广义相对论中可以知道,非惯性系中,时空是不均匀的,也就是说,在同一非惯性系中,没有统一的时间,因此不能建立统一的同时性。
相对论导出了不同惯性系之间时间进度的关系,发现运动的惯性系时间进度慢,这就是所谓的钟慢效应。可以通俗的理解为,运动的钟比静止的钟走得慢,而且,运动速度越快,钟走的越慢,接近光速时,钟就几乎停止了。
尺子的长度就是在一惯性系中"同时"得到的两个端点的坐标值的差。由于"同时"的相对性,不同惯性系中测量的长度也不同。相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这就是所谓的尺缩效应,当速度接近光速时,尺子缩成一个点。

回答2:

爱因斯坦是世界著名物理学家。他曾经给一家杂志社设计过这样一道填数题:

如图1所示的9个圆圈是3个小的等腰三角形、1个较大的等腰三角形和3个大的等腰三角形的顶点,将1~9这九个数字填入圆圈,要求这7个三角形中每个三角形顶点的数字之和相等。

如何较快地解答这道爱因斯坦填数题呢?

首先要求出每个三角形三个顶点的数字之和是多少。

如图1所示,3个小的等腰三角形顶点的圆圈恰好是9个圆圈。这9个圆圈中所填数字之和为1+2+3+4+5+6+7+8+9=45,但每个等腰三角形顶点的数字之和是相等的,故每个三角形三个顶点的数字之和为 45÷3=15。

其次,我们再对图1进行分析,在分析的基础上填数。

(一)对图1中的7个三角形来说,共计21个顶点,但实际上图1只有9个顶点,每个顶点都重复计数了,如图2中的A、B、C都记数为3次,其余的顶点都记数为2次。

(二)图1中共有7个三角形,而每个三角形顶点的数字之和相等为15,故将15写成1~9中某三个数的和。

15 =9+1+5=9+2+4

=8+1+6=8+2+5

=8+3+4=7+2+6

=7+3+5

=6+4+5

共有8个等式,而只需要7个等式,应该去掉一个等式。去掉哪一个等式合理呢?分析8个等式中各个数字出现的次数。

由分析(一)知5使用的次数必须减少1次,2、4、6、8中的某两个使用的次数也应该减少1次。由于只能去掉一个等式,而且这个等式要涉及到5及2、4、6、8中的某两个,又15=5+2+8、15=5+4+6,所以15=5+2+8与15=5+4+6中应该去掉一个。

①去掉15=5+2+8,则有:

15 =9+1+5=9+2+4=8+1+6

=8+3+4=7+2+6=7+3+5

=6+4+5

这7个等式中,只有4、5、6使用了3次,由(一)知4、5、6应该填在图2中的A、B、C位置上。

4、5、6填好后,对4来说,还有15=8+3+4=9+2+4。由此确定C、D、E中的D与E。

若用15=8+3+4,对 3来说还有15=7+3+5,3只能填在D位置上,其他位置上的数可由三角形三个顶点的数字之和是15唯一确定。见图3。

若用 15=9+2+4,对 9来说还有 15=9+1+5,9只能填在D位置上,其他位置上的数可由三角形三个顶点的数字之和唯一确定。见图4。

②去掉 15=5+4+6,则有

15 =9+1+5=9+2+4=8+1+6

=8+2+5=8+3+4

=7+2+6=7+3+5

这7个等式中,只有2、5、8使用了3次,由(一)知2、5、8应该填在图2中的A、B、C位置上。

类似于①中的分析,D位置可以填9或7。又可以得到两种填法,见图5、图6。故知爱因斯坦填数题只有4种填法。

解决这类填数题,关键在于选准突破口,往往以重复记数次数最多的数为突破口,如图2中的A、B、C。

回答3:

爱因斯坦在狭义相对论中提出的“尺缩钟慢”在逻辑上存在悖论,在事实上没有依据。在物理学界,相对论一直是最有争议的理论。
对此问题,建议你现在不要对其感兴趣,费思量。考上理想大学,选择理想专业,才是目前最重要的。

回答4:

逻辑起点就是相对性原理和光速不变原理,洛仑兹变换的推导是不难,难就难在光速不变与我们的日常经验不符。我在高中时也是难以接受,现在觉得挺自然的了。不必强求一下就接受,你再长大一点儿,就不会觉得这是问题了。
BTW,物理中麻烦的不是狭义相对论,对于理解来说,最麻烦的是量子力学(爱因斯坦说他思考量子力学的时间百倍于相对论);对于数学求解来说,广义相对论和量子场论都很麻烦。

回答5:

我觉得:
钟慢尺缩是指高速运动惯性系相对于静止惯性系而言的
就其本身的惯性系,时间和长度是不变的
这些都是有公式可以定量计算的,但是要到大学才有
你这个阶段,稍微了解下就好了~~~