就是因为这类问题要平均分
才发明了抽屉原理 答案补充 抽屉原理
日常生活中,人们只要稍加留意,就不难发现某些带有规律性的事物.比如,将10个苹果放进9个抽屉,那么肯定有一个抽屉里放进了两个或更多的苹果.这是大家都能理解的一个简单道理,该道理即被称为抽屉原理或鸽笼原理(以鸽子比做苹果,以笼子比做抽屉).抽屉原理的一般形式为:将n+1个苹果放进n个抽屉里,则至少有一个抽屉里放进了两个或两个以上的苹果.
千万别小看这个既平常又简单的原理,许多有趣的问题,都可以用抽屉原理来 解决.比如,任意13个人中,必然有2个人是在同一个月份出生的.只需要将13个人看成苹果,12个月份看成抽屉,于是由抽屉原理就得到了结论.再比如,在边长为1的正方形内,任意给定5个点,则其中必有2个点,它们之间的距离不会大于1/2 .证明这个问题只需要将正方形分为面积相等的4等分,则4个小正方形的边长都是1/2,每个小正方形内任意两点之间的距离均不会大于大正方形的对角线长1/2. 将5个点看成苹果,4个小正方形看成抽屉,由抽屉原理,必然有一个小正方形中有2个点,于是这两个点之间的距离不大于1/2. 答案补充 很正常的事啊
把其他的平均分后(每个抽屉有1个)
再把多出的一个无论放在哪 都会出现一个有2个苹果的抽屉 答案补充 其他的方法有的盒子空
那么有2个的就不只一个 或一个中有多个
在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。
第一抽屉原理
原理1: 把多于n+k个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
抽屉原理
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。
原理2 :把多于mn(m乘以n)(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。
原理1 、2 、3都是第一抽屉原理的表述。
第二抽屉原理
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。
1、抽屉原理之所以要突出平均分的思想,是因为抽屉原理本身就是在平均分的的基础上才发明出来的。
2、抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确地提出来的,因此,也称为狄利克雷原理。其中一种简单的表述法为:若有n个笼子和n+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少2只鸽子。另一种为:若有n个笼子和kn+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少k+1只鸽子。