什么是b样条曲线

什么是b样条曲线,有什么用
2025-03-29 06:28:27
推荐回答(2个)
回答1:

Bizer曲线(B样条曲线)
在CAD/CAM中,常采用Bezier曲线曲面,这样便于理解曲线/曲面。但采用Bezier形式的曲线曲面不能精确的表示二次曲线和二次曲面,如球体和圆。将多项式改为有理形式,不仅能精确表示二次曲线和二次曲面,且增加了设计的自由度。重复的进行两点线性插值,可以构造Bezier Curve。重复的进行两点有理插值,可以构造有理Bezier Curve。
与控制顶点类似,有理Bezter曲线上的点可映射为Bezter曲线上的点或对应的控制多边形上的点。在透视投影使用理形式与非有理形式产生相同投影时,有理Besier曲线曲面和有理B样条曲线曲面继承了Bezier曲线曲面和B样条曲线曲面的简单、优美的特性。这种形式,数学上的分析及几何特性的掌握了解都比其他4D空间(wx、wy、wz、w)方法和单纯的3D空间有理形式要简单和容易。
现在,有理曲线曲面不仅仅用于表示和构造二次曲线曲面。对有理曲线曲面的权因子该如何选取往往不很清楚,而且有理形式的计算比非有理形式复杂,但是,由于其构造特性,现在人们已经开始考虑有理Bezter和有理B样条曲线曲面的应用

回答2:

在数学的子学科数值分析里,B-样条是样条曲线一种特殊的表示形式。它是B-样条基曲线的线性组合。B-样条是贝兹曲线的一种一般化,可以进一步推广为非均匀有理B样条(NURBS),使得我们能给更多一般的几何体建造精确的模型。

定义
给定m+1 个节点ti ,分布在[0,1]区间,满足

一个n次B样条是一个参数曲线:

它由n次B样条基(basis B-spline)组成

.
Pi称为控制点或de Boor点. 多边形可以通过把de Boor点用线连起来构造出来,从P0开始,到Pn结束。这样的多边形称为de Boor多边形.

m+1个n次B样条基可以用Cox-de Boor递归公式 定义

当节点等距,称B样条为均匀(uniform)否则为非均匀(non-uniform)。

[编辑] 均匀B样条
当B样条是均匀的时候,对于给定的n,每个B样条基是其他基的平移拷贝而已。一个可以作为替代的非递归定义是

满足

满足

其中

(ti �6�1 t) +
是截断幂函数(truncated power function)