聚合参数对聚合物的形貌,结构及性能的影响:提高聚合物的耐热性主要有三个途径:一是增加高分子链的刚性,二是使得聚合物能够结晶,三是进行交联;
导热性:结晶型的聚合物结构规整,导热性较好,另外添加高导热性填料(如铜粉、铝粉、石墨等)组成的高分子复合材料导热性较好。
(1)力学性能结晶度对聚合物力学性能的影响视其非晶区所处的力学状态是玻璃态还是高弹态而定。就力学性能而言,玻璃态和高弹态之间差别很大。如弹性模量,晶态与玻 璃态的弹性模量非常接近,而高弹态的模量却要小4~5个数量级。因此,当非晶区处于高弹态时,其分子链段的运动能力较强,有利于聚合物获得良好的韧性。随着结晶度的增加, 材料的弹性模量、强度、刚度将有所提高,抵抗蠕变、应力松弛的能力提高,而塑性、冲击韧性将有所下降。当非晶区处于玻璃态时,其分子链段的运动受限。在这种情况下,随着结晶度的增加,材料的脆性增加,拉伸强度下降。
(2) 密度与光学性质晶区中分子链排列规整,其密度大于非晶区,故随结晶度增加, 聚合物的密度增加。而材料的折光率与密度有关,聚合物中晶区和非晶区的折光率不同。当光线通过聚合物时,在晶区界面上发生折射和反射,无法直接通过。所以两相共存的聚合物通常呈乳白色,不透明,如聚乙烯、尼龙等。随着结晶度减小,材料的透明度增加。而完全非晶的聚合物,如聚甲基丙烯酸甲酯(有机玻璃)、聚苯乙烯等通常是透明的。对于许多结晶聚合物,为了提高其透明度,可以设法减小其晶区尺寸,当晶区尺寸小于可见光的波长时,也不会发生光的折射和反射。如等规聚丙烯,在加工时加入形核剂,减小球晶尺寸,透明度将有明显改善。
(3) 热性能对于塑料而言,在不结晶或结晶度低时,其最高使用温度就是其玻璃化温度。当结晶度达20%时,晶区的“刚硬化”作用使大分子链非晶部分变短,链段的位移与取向难于进行;结晶度大于40%时,微晶的密度很大,以致形成了贯穿整个材料的连续晶相,使材料的软化点和热畸变温度等热性能均显著提高,材料的使用温度可以从玻璃化温度提高到结晶熔点。
(4) 其他性能由于结晶区中分子链做规整排列,与非晶区相比,能更好地抵抗各种溶剂的渗入,因此,随着结晶度的提高,材料的耐溶剂性等其他性能将有所提高。
与本体和溶液中的相行为相比,在薄膜状态下,分子链的运动是在其内在因素和外场的共同作用下进行的。微相分离的最终结构形态除了与超分子的组成,分子量,相分离强度有关外,还与薄膜厚度,表面和界面对组分的选择性亲和作用等因素有关。因此,所提出的问题就是如何利用这些影响薄膜结构的因素,构建具有新颖结构和有序结构的薄膜,以及如何实现薄膜形貌及结构尺寸的调控。另外一个重要方面就是如何利用聚合物超分子本身特殊性质,实现超分子薄膜表面结构随外界条件下的响应性变化。在薄膜的功能性方面,薄膜结构以及组成与薄膜性质有着怎样的关系,如何通过调节薄膜的结构以及组成,来优化薄膜的性质。 本论文利用高分子之间,以及高分子与无机金属离子之间的的非共价键相互作用(静电相互作用,氢键,络合作用)得到聚合物超分子体系。研究其自组装形成纳米结构的影响因素和机理,掌握调控纳米结构的形态、尺寸、以及薄膜光学性质的规律,实现通过调控薄膜微结构来优化薄膜性质的目的。 首先,本论文对聚合物超分子薄膜表面形貌的构建和调控方面进行了研究。利用两种嵌段共聚物之间的氢键作用,实现聚合物超分子络合体溶解性在共溶剂中的下降。在动力学控制的条件下,体系中未形成氢键的组分充当了“桥梁”作用,使形成的纳米球状聚集体发生在一维方向的聚集,得到柱状纳米聚集体。当两种聚合物之间全部形成氢键时,发生柱状纳米聚集体到球状胶束聚集体的转变。研究了溶剂挥发速度,聚合物溶液粘度等对形成纳米结构薄膜的影响。利用静电相互作用,得到聚合物超分子结构。实现了具有规则纳米孔洞结构的聚合物超分子薄膜的制备。研究了溶剂性质,溶剂挥发速度,聚合物溶液粘度,环境温度等对形成规则孔洞的影响,以及薄膜表面结构随外界条件的响应性变化, 并提出了孔洞形成及演变机理。 基于对薄膜表面形貌和结构的调控,我们对薄膜结构与薄膜的光学性质之间的关系进行了研究。利用两种均聚物之间的氢键相互作用,得到超分子嵌段共聚物。超分子嵌段共聚物发生微观相分离可得到自组装薄膜,利用氢键是一种弱的相互作用,使用选择性溶剂将某一组分除去,得到具有纳米孔洞的薄膜。薄膜表现出很好的抗反射性,在可见光区实现了98.00%的单波长高透过。在近红外区实现了宽波抗反射效果,透光率可达到99.00%以上,而且波段可调。深入研究了薄膜的厚度,刻蚀时间对薄膜透光率的影响。利用金属和聚合物之间的络合相互作用,得到被聚合物稳定的银纳米粒子。受聚合物与银纳米粒子之间的电子转移吸收的影响,复合纳米材料在薄膜状态下表现出很好的光致发光性质。研究了材料之间的配比,溶液的浓度,聚合物的分子量对形成的复合纳米粒子的尺寸及光致发光性能的影响。