求1.z=e^[-sin (y/x)] ;2.z=arctan[(x+y)/(x-y)]的偏导数
解:1。令z=e^u,u=-sinv,v=y/x;则:
∂z/∂x=(dz/du)(du/dv)(∂v/∂x)=(e^u)(-cosv)(-y/x²)=e^[-sin(y/x)][cos(y/x)](y/x²);
∂z/∂y=(dz/du)(du/dv)(∂v/∂y)=(e^u)(-cosv)(1/x)=-e^[-sin(y/x)][cos(y/x)](1/x);
解:2。令z=arctanu,u=(x+y)/(x-y);则:
∂z/∂x=(dz/du)(∂u/∂x)=[1/(1+u²)][(x-y)-(x+y)]/(x-y)²= -{1/[1+arctan²(x+y)/(x-y)]}[(2y/(x-y)²];
∂z/∂y=(dz/du)(∂u/∂y)=[1/(1+u²)][(x-y)+(x+y)]/(x-y)²={1/[1+arctan²(x+y)/(x-y)]}[(2x/(x-y)²];