看图
先化简,再求值。
(1/x+1+x^2-2x+1/x^2-1)÷x-1/x+1,其中x=2
解,得:
==(1/x+1+x^2-2x+1/x^2-1)*(x+1)/(x-1)
==1/(x+1)*(x+1)/(x-1)+x(x-2)(x+1)/(x-1)
==(x-1)+x(x-2)(x+1)/(x-1)
==[(x-1)^2+x(x-2)(x+1)]/(x-1)
把x==2带入式子得
1+0/1
==1
原式=[(X-1)^2-1+1/X+1/X^2]/X-1/X+1
=[1-1+1/x+1/x^2]/x-1/x+1
=1/x^3+1/x^2+1/x+1-2/x
=(1/x+1)^3-2/x
=27/8-1
=19/8