怎么学诱导公式

2025-04-24 08:10:58
推荐回答(1个)
回答1:

 上面这些诱导公式可以概括为:
  对于kπ/2±α(k∈Z)的三角函数值,
  ①当k是偶数时,得到α的同名函数值,即函数名不改变;
  ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
  (奇变偶不变)
  然后在前面加上把α看成锐角时原函数值的符号。
  (符号看象限)
  例如:
  sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
  当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
  所以sin(2π-α)=-sinα
  上述的记忆口诀是:
  奇变偶不变,符号看象限。
  公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
  所在象限的原三角函数值的符号可记忆
  水平诱导名不变;符号看象限。
  #
  各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.
  这十二字口诀的意思就是说:
  第一象限内任何一个角的四种三角函数值都是“+”;
  第二象限内只有正弦是“+”,其余全部是“-”;
  第三象限内切函数是“+”,弦函数是“-”;
  第四象限内只有余弦是“+”,其余全部是“-”.
  上述记忆口诀,一全正,二正弦,三内切,四余弦
  #
  还有一种按照函数类型分象限定正负:
  函数类型
第一象限
第二象限
第三象限
第四象限
  正弦
...........+............+............—............—........
  余弦
...........+............—............—............+........
  正切
...........+............—............+............—........
  余切
...........+............—............+............—........
  奇变偶不变,符号看象限..