有关大学数学的不定积分,求助!

希望有详细过程,谢谢!
2025-02-19 00:32:42
推荐回答(5个)
回答1:

过程详细见图,希望能解答你心中的疑惑帮助你,满意望采纳

回答2:

x^2-2x = (x-1)^2 -1

let
x-1 = secu
dx = secu.tanu du
x=2, u=0
x=+∞ , u=π/2
∫(2->+∞) dx/[(x-1)^4.√(x^2-2x)]
=∫(0->π/2) secu.tanu du/[(secu)^4.tanu]
=∫(0->π/2) (cosu)^3 du
=∫(0->π/2) (cosu)^2 dsinu
=∫(0->π/2) [ 1-(sinu)^2] dsinu
=[ u -(1/3)(sinu)^2]|(0->π/2)
= π/2 - 1/3

回答3:

回答4:

这是反常积分,得换成一般变量,然后求极限,最后有点别扭,主要是cos为0的,sin为1,cos为1的,sin为0的转换.

回答5:

x^2 - 2x = (x-1)^2 - 1, 令 x-1 = secu, 则 x = 1+secu, dx = secutanudu
I = ∫<2, +∞>dx/[(x-1)^4 √(x^2-2x)] = ∫<0, π/2>secutanudu/[(secu)^4 tanu]
= ∫<0, π/2>du/(secu)^3 = ∫<0, π/2>(cosu)^3du = ∫<0, π/2>[1-(sinu)^2]dsinu
= [sinu-(sinu)^3/3]<0, π/2> = 2/3