23.
(1)
cosq=x/3,sinq=y/√3
cos²q+sin²q=1
(x/3)²+(y/√3)²=1
x²/9+ y²/3=1
此即为所求曲线C的普通方程,是一个椭圆。
(2)
x=3cosq,y=√3sinq
x+√3y
=3cosq+3sinq
=3√2[(√2/2)sinq+(√2/2)cosq]
=3√2sin(q+π/4)
sin(q+π/4)=1时,x+√3y有最大值(x+√3y)max=3√2
sin(q+π/4)=-1时,x+√3y有最小值(x+√3y)min=-3√2
(3)
y=kx-2代入曲线C方程,整理,得
(3k²+1)x²-12kx+3=0
要方程有两不等实根,判别式△>0
(-12k)²-4×(3k²+1)×3>0
k²>1/9
k<-1/3或k>1/3
设方程两根x1、x2,由韦达定理得
x1+x2=12k/(3k²+1)
x1x2=3/(3k²+1)
y1=kx1-2,y2=kx2-2
|PA|=|PB|
|PA|²=|PB|²
(x1-0)²+(y1-1)²=(x2-0)²+(y2-1)²
整理,得(x1²-x2²)+(y1²-y2²)-2(y1-y2)=0
y1=kx1-2,y2=kx2-2代入,整理,得
(k²+1)(x1²-x2²)-6k(x1-x2)=0
(k²+1)(x1+x2)(x1-x2)-6k(x1-x2)=0
等式两边同除以x1-x2,并将x1+x2=12k/(3k²+1)代入,整理,得
k(k+1)(k-1)=0
k=0(舍去)或k=-1或k=1
k=-1时,直线方程为y=-x-2;k=1时,直线方程为y=x-2
综上,得:直线方程为y=-x-2或y=x-2
21.
(1)
n=1时,a1+3S1=a1+3a1=1
4a1=1
a1=1/4
n≥2时,Sn=(1-an)/3
an=Sn-S(n-1)=(1-an)/3 -[1-a(n-1)]/3
4an=a(n-1)
an/a(n-1)=1/4,为定值
数列{an}是以1/4为首项,1/4为公比的等比数列
an=(1/4)(1/4)ⁿ⁻¹=1/4ⁿ
数列{an}的通项公式为an=1/4ⁿ
(2)
an=1/4ⁿ=2⁻²ⁿ=2^(bn)
bn=-2n
数列{bn}的通项公式为bn=-2n
(3)
c(n+1)=cn-bn
c(n+1)-cn=-bn=-(-2n)=2n=n²-(n-1)²+1
[c(n+1)-n²]-[cn-(n-1)²]=1,为定值
c1-(1-1)²=2-0²=2
数列{cn-(n-1)²}是以2为首项,1为公差的等差数列
cn-(n-1)²=2+1×(n-1)=n+1
cn=(n-1)²+n+1=n²-2n+1+n+1=n²-n+2
数列{cn}的通项公式为cn=n²-n+2
23
1) x^2 = 9 cosq^2, y^2 = 3 sinq^2
x^2/9 + y^2/3 = 1
椭圆, 半长轴 a = 3, 半短轴 b = sqrt(3)
2) 令 z = x + sqrt(3)y
x^2 + (sqrt(3)y)^2 = 9
z^2 = x^2 + (sqrt(3)y)^2 + 2sqrt(3)xy = 9 + 2x*sqrt(3)y <= 9 + (x^2 + (sqrt(3)y)^2) = 18
z = x + sqrt(3)y 最大值为 3sqrt(2), 当且仅当 x = sqrt(3)y = 3sqrt(2)/2
3) 设 A(x1, y1), B(x2, y2), AB 中点 M(x0, y0), 有
x0=(x1+x2)/2, y0 =(y1+y2)/2
x1^2 + 3y1^2 = 9.......(1)
x2^2 + 3y2^3 = 9.......(2)
(1)-(2):
(x1-x2)2x0 + 3(y1-y2)2y0 = 0
x0 + 3y0(y1-y2)/(x1-x2) = 0
其中 (y1-y2)/(x1-x2) = k
x0 + 3y0k = 0
x0 = - 3y0k ............(3)
k = - x0/3y0 ............(4)
设 PM 的斜率为 k', |PA|=|PB|, 因此 PM 是 AB 的垂直平分线, PM垂直于AB
kk' = -1
其中 k' = (y0-1)/x0
-(y0-1)/3y0 = -1
y0 = -1/2 ..........(5)
对于 M(x0, y0), 有:
y0 = kx0 - 2
x0 = (y0 + 2)/k = 3/2k
由 (3), (5)
-x0 = -3k/2
3k/2 - 3/2k = 0, k - 1/k = 0,
解得: k = 1 或 -1
直线方程 y = x - 2 或者 y = -x - 2
21.
1)
a1 + 3s1 = 4a1 = 1
a1 = 1/4
a(n+1) + 3s(n+1) = 1 ........(1)
a(n) + 3s(n) = 1 .........(2)
(1)-(2)
a(n+1) - a(n) + 3a(n+1) = 0
a(n+1) = a(n)/4
因此, a(n) = 1/4^n
2)
a(n) = 2^ (-2n) = 2^ b(n)
b(n) = -2n
T(n) = -2(1+2+...+n) = -n(n+1)
3)
c(n+1) = c(n) + 2n = c(n-1)+ 2n-1 + 2n = .... = c1 + 2(1 + .... + n)
对应地
c(n) = c1 + 2(1+....+ (n-1)) = 2 + n(n-1) = n^2 - n + 2