n≥2时,
an=2Sn²/(2Sn -1)
Sn-S(n-1)=2Sn²/(2Sn -1)
[Sn-S(n-1)](2Sn -1)=2Sn²
2Sn²-Sn-2SnS(n-1)+S(n-1)=2Sn²
-Sn-2SnS(n-1)+S(n-1)=0
S(n-1)-Sn=2SnS(n-1)
等式两边同除以SnS(n-1)
1/Sn -1/S(n-1)=2
(sn-sn-1)(2sn-1)=2sn^2
-2snsn-1-sn+sn-1=0
2=(-sn+sn-1)/snsn-1
2=1/sn-1/sn-1
,