把分母的1用abc来代替,得出的式子约分为1/(b+1+bc)+1/(c+1+ac)+1/(a+1+ab),对照原式可得a,b,c分别为1,才能和原式相等,所以把a,b,c等于1代入要求的式子里,得出1/3+1/3+1/3=1
a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)
= a/(ab+a+abc)+b/(bc+b+1)+c/(ac+c+1)
=1/(b+1+bc)+b/(bc+b+1)+c/(ac+c+1) 分子分母约去a
=(1+b)/(b+1+bc)+c/(ac+c+1)
前两项相加
=(1+b)/(b+1+bc)+c/(ac+c+abc)
同第一步
=(1+b)/(b+1+bc)+1/(a+1+ab)
约去c
=(1+b)/(b+1+bc)+abc/(a+abc+ab)
约去a
=(1+b)/(b+1+bc)+bc/(1+bc+b)
=(1+b+bc)/(1+bc+b)
=1
a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)
=a/(ab+a+1)+ab/(abc+ab+a)+abc/(abac+abc+ab)
=a/(ab+a+1)+ab/(1+ab+a)+1/(a+1+ab)
=(ab+a+1)/(ab+a+1)
=1
9