一、集合有关概念 1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性如:世界上最高的山
(2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{ „ } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
1) 列举法:{a,b,c„„}
2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{xR| x-3>2} ,{x| x-3>2}
3) 语言描述法:例:{不是直角三角形的三角形} 4) Venn图:
4、集合的分类:
(1) 有限集 含有有限个元素的集合 (2) 无限集 含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2
=-5}
二、集合间的基本关系 1.“包含”关系—子集
注意:BA有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。AA
②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA)
③如果 AB, BC ,那么 AC ④ 如果AB 同时 BA 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 有n个元素的集合,含有2n个子集,2n-1个真子集 三、集合的运算 运算类型 交 集 并 集 补 集 定 义
由所有属于A且属于B的元素所组成
的集合,叫做A,B的
交集.记作AB(读作‘A交B’),即AB={x|xA,且
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B
的并集.记作:AB(读作‘A并B’),即AB ={x|xA,或
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组
成的集合,叫做S中子集A的补集(或余集) 记作ACS,即
在这里有详细的http://wenku.baidu.com/view/18a71d6ea98271fe910ef9b1.html
高一到高三这里都有