利用极限的夹副准则证明limn→无穷大(n⼀n^2+π+n⼀n^2+2π+...+n⼀n^2+nπ)=1

需要证明的详细过程
2024-11-23 02:29:51
推荐回答(3个)
回答1:

n/(n^2+nπ) ≤ n/(n^2+mπ) ≤ n/(n^2 + π) 注:n ≤ m ≤ 1
所以,
n*[n/(n^2+nπ)]=n^2/(n^2+nπ) ≤ ∑n/(n^2+mπ) ≤ n*[n/(n^2+π) = n^2/(n^2+π)

因为:lim[n^2/(n^2+nπ)]=lim[1/(1+π/n)] = 1
lim[n^2/(n^2+π)] = lim[1/(1+π/n^2)] = 1
所以,
lim∑n/(n^2+mπ) = 1

回答2:

参考书本例题就可以啦

证明:limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】=limn*n/n^2=limn^2/n^2=1
又因为limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】>limn【(1/n^2+nπ)+(1/n^2+nπ)+......(1/n^2+nπ)】
=limn(n/(n^2+nπ)
=limn/n+π)
=1
所以limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】=1 成立。

回答3:

n^2/n^2+π<这个式子(简称Y吧)由于n趋于正无穷
所以 左边= 1/(1+π/n^2)=1
右边=1/(1+π/n)=1
1所以Y=1