急!!求二倍角公式,以及推导过程!

2024-12-04 00:55:57
推荐回答(4个)
回答1:

正弦二倍角公式:  sin2α = 2cosαsinα
推导:sin2α = sin(α+α) = sinαcosα + cosαsinα= 2sinαcosα
余弦二倍角公式: 余弦二倍角公式有三组表示形式,三组形式等价:   
1.cos2α = 2cos^2 α- 1   
2.cos2α = 1 �6�1 2sin^2 α   
3.cos2α = cos^2 α �6�1 sin^2 α
推导:  cos2A = cos(A+A) = cosAcosA - sinAsinA = cos^2 A- sin^2 A = 2cos^2 A - 1=1 - 2sin^2 A
正切二倍角公式:  
tan2α = 2tanα/[1 - (tan^2α)]   
tan(1/2*α)=(sin α)/(1+cos α)=(1-cos α)/sin α
推导:  tan(2a) = tan(a+a) = (tan(a) + tan(a))/(1 - tan(a)*tan(a) )= 2tanα/[1 - (tanα)^2]
降幂公式(半角公式):  cos^2(A)= [1 + cos2A]/2
  sin^2(A)= [1 - cos2A]/2
  tan^2(A)= [1- cos2A]/[1+cos2A]
变式:  sin2α = sin^2(α+π/4) - cos^2(α+π/4) = 2sin^2(a+π/4) - 1 = 1 - 2cos^2(α+π/4);
  cos2α = 2sin(α+π/4)cos(α+π/4)

回答2:

三角函数二倍角公式 sin2a=sin(a+a)=sinacosa+cosasina=2sinacosa cos2a=cos(a+a)=cosacosa-sinasina=2cos^2a-1=1-2sin^2a

回答3:

倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]

回答4: