“兀”(3.1415)是由我国古代数学家祖冲之的割圆术求出来的。
我国古代数学家祖冲之,以圆的内接正多边形的周长来近似等于圆的周长,从而得出π的精确到小数点第七位的值。
π=圆周长/直径≈内接正多边形/直径。当正多边形的边长越多时,其周长就越接近于圆的周长。祖冲之算得的π值在绝大多数的实际应用中已经非常精确。
π是个无理数,即不可表达成两个整数之比,是由瑞士科学家约翰·海因里希·兰伯特于1761年证明的。 1882年,林德曼(Ferdinand von Lindemann)更证明了π是超越数,即π不可能是任何整系数多项式的根。
圆周率的超越性否定了化圆为方这古老尺规作图问题的可能性,因所有尺规作图只能得出代数数,而超越数不是代数数。
我国古代数学家祖冲之,以圆的内接正多边形的周长来近似等于圆的周长,从而得出π的精确到小数点第七位的值。π=圆周长/直径≈内接正多边形/直径。当正多边形的边长越多时,其周长就越接近于圆的周长。
祖冲之算得的π值在绝大多数的实际应用中已经非常精确了,这一伟大成就直到一千多年后才被欧洲的数学家追平。太空中有以祖冲之命名的小行星。
“兀”(3.1415)是由我国古代数学家祖冲之的割圆术求出来的。
我国古代数学家祖冲之,以圆的内接正多边形的周长来近似等于圆的周长,从而得出π的精确到小数点第七位的值。
π=圆周长/直径≈内接正多边形/直径。当正多边形的边长越多时,其周长就越接近于圆的周长。祖冲之算得的π值在绝大多数的实际应用中已经非常精确。
纵观π的计算方法,在历史上大概分为实验时期、几何法时期、解析法时期和电子计算机计算法几种。
实验时期:约产于公元前1900年至1600年的一块古巴比伦石匾上记载了圆周率 = 25/8 = 3.125,而埃及人似乎更早的知道圆周率,英国作家 John Taylor (1781–1864) 在其名著《金字塔》中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。
几何法时期:古希腊大数学家阿基米德(公元前287–212 年)开创了人类历史上通过理论计算圆周率近似值的先河。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,他得出3.141851 为圆周率的近似值。
这种方法随后被2位中国古代数学家发扬光大。公元263年,中国数学家刘徽用“割圆术”,求出3072边形的面积,得到令自己满意的圆周率≈3.1416。
而南北朝时期的数学家祖冲之进一步求出圆内接正12288边形和正24576边形的面积,得到3.1415926<π<3.1415927的精确值,在之后的800年里祖冲之计算出的π值都是最准确的。
解析法时期:这是圆周率计算上的一次突破,是以手求π的解析表达式开始的。法国数学家韦达(1540-1603年)开创了一个用无穷级数去计算π值的崭新方向。无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,使得π值计算精度迅速增加。
1706年,英国数学家梅钦率先将π值突破百位。到1948年英国的弗格森(D. F. Ferguson)和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。
计算机时期:自从第一台电子计算机ENIAC在美国问世之后,立刻取代了繁杂的π值的人工计算,使π的精确度出现了突飞猛进的飞跃。1955年,一台快速计算机竟在33个小时内。把π算到10017位,首次突破万位。
技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随着美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和Martin Bouyer以电脑CDC 7600发现了π的第一百万个小数位。
2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。56岁的近藤茂使用的是自己组装的计算机,从10月起开始计算,花费约一年时间刷新了纪录。
扩展资料:
是第十六个希腊字母的小写。
这个符号,亦是希腊语 περιφρεια (表示周边,地域,圆周等意思)的首字母。1706年英国数学家威廉·琼斯(William Jones ,1675-1749)最先使用“π”来表示圆周率 。
1736年,瑞士大数学家欧拉也开始用 表示圆周率。从此,
便成了圆周率的代名词。 要注意不可把
和其大写Π混用,后者是指连乘的意思。
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以39位精度的圆周率值,来计算宇宙的大小,误差还不到一个原子的体积 。
以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。
π在许多数学领域都有非常重要的作用。
π是个无理数,即不可表达成两个整数之比,是由瑞士科学家约翰·海因里希·兰伯特于1761年证明的。 1882年,林德曼(Ferdinand von Lindemann)更证明了π是超越数,即π不可能是任何整系数多项式的根。
圆周率的超越性否定了化圆为方这古老尺规作图问题的可能性,因所有尺规作图只能得出代数数,而超越数不是代数数。
参考资料:百度百科——圆周率
在数学史上,圆周率π的精确度,始终引起人们极大的关注,并成为衡量一个国家数学发展水平的标志.纵观π的计算史,其计算方法大致可分为:几何法、解析法、实验法、电子计算机计算法.
一、几何法 在公元前240年左右,阿基米德在他的《圆的度量》一书中首先采用”穷竭法”求π的值.“穷竭法”即用圆的内接和外切正多边形周长逼近圆周长.他作出了正96边形,并由此得到π的约值,用圆的内接正多边形的面积逼近圆的面积.他算到了正192边形。
祖冲之在刘徽工作的基础上,求出圆内接正12288边形和正24576边形的面积,得到
3.1415926<π<3.1415927.
祖冲之的π值纪录,保持了将近一千年.直到公元1427年中亚数学家阿尔·卡西计算了圆内接和外切正3×228边形的周长后,得到π值的17位小数.公元1610年,德国人鲁道夫花费了毕生精力,计算了正262边形的周长后,得到π的35 位小数值.鲁道夫的工作,表明了几何法求π的方法己走到尽头.1630年格林贝格(Grien berger)用几何法计算π至 39位小数.这是几何法的最后尝试,也是几何法的最高纪录.
二、解析法 圆周率计算上的第一次突破,是以手求π的解析表达式开始的.著名法国数学家韦达(1540—1603)做出了开创性的工作.在《数学定律,应用于三角形》一书中,
他计算出3.1415926535<π<3.1415926537.显然他的π精确度不是当时世界领先水平,但利用一个无穷级数去刻划π值却开创了一个崭新的方向.
1671年,英国圣安德鲁大学教学教授格雷戈里(1638—1675)提出了著名的级数.
格雷戈里的工作具有普遍性,成为解析法求π值的基础.在后来的二百多年里,许多人利用这一公式稍作修改并进行大量计算.不断刷新π值的世界纪录,1706年,英国的梅钦(1680—1751)利用格氏级数破π的百位大关.继此之后,利用反正切展开式计算π的公式相继出现,π的位数也直线上升.1948年1月,英国的弗格森(D.F.Fergnson)与美国的伦奇(J.W.Wrench)用解析法得到π的 808位准确值,创造了甲级数方法的最高纪录,结束了用级数方法计算π值的阶段.这也是手工计算π的最高纪录,此后再没有人用手算与他们较量了.
三、实验法 1777年法国自然科学家蒲丰(1707—1788)出版了《能辨是非的算术实验》一书,提出了著名的“蒲丰实验”:在画有一组距离为a的平行线的平面上,随意投下长度为l(l<a)的针.
1901年意大利数学家拉兹瑞尼用蒲丰的方法,仅投针3408次就轻松地得到π=3.1415929.这与π的精确值相比,一直到小数点后第七位才出现不同.
尽管这一方法远不如解析法便捷,且π的精确度也大为逊色.但它揭示了分析方法与概率方法之间的联系,向人们暗示了数学本质的某种统一性,促使人们深入探讨π的种种性质.开辟了π研究的新方向.
四、电子计算机计算法
自从第一台电子计算机ENIAC在美国问世之后,立刻取代了繁杂的π值的人工计算,使π的精确度出现了突飞猛进的飞跃.1949年,美国人赖脱威逊利用ENIAC计算机花了70个小时把π算到2034位,一下子就突破了千位大关,1955年,一台快速计算机竟在33个小时内。把π算到10017位,首次突破万位,1996年东京大学的一组数学家曾花了36个小时,在计算机上算出了π的32.3亿位小数.但是将前纪录保待了4年之久的美国数学家丘德诺夫斯基兄弟采用了新方法又获得了超过40亿位数的π.现在人们利用电子计算机将π算到了小数点后42.9亿多.如果把这一串数字打印出来,每厘米打印六个数字,那么整个数字的长度接近7200千米.比从德国柏林到美国芝加哥的距离还长.
不过电子计算机只是工具,它仍需用解析法的公式,可算是解析法的延伸和发展.其实这时π的计算变成了算法的精巧构思和机器速度的较量.除了显示电子计算机威力和检验机器效果之外,π的位数已无任何现实价值.
从π的计算可以看出,计算方法的每一次创新,都带来π的位数的巨大突破,但每一种方法都有上限:几何法因人们测量误差而不可能超过百位;解析法又因计算量聚增而局限于千位之内;实验法的指导意义大于它的实用价值;电子计算机同样受机器速度的影响,而不可能无限制地算出π值。
自己计算可参考:
π是怎样计算出来的? | 问答 | 问答 | 果壳网 科技有意思
http://www.guokr.com/question/464351/
π=圆周长/直径≈内接正多边形/直径。当正多边形的边长越多时,其周长就越接近于圆的
用圆的周长除以圆的直径π的近似值,祖冲之是用22/7,或355/113来计算的.
在现代,一般是用一个无穷级数来表示π,而求他的有限项和,来作为π的近似值,方法很多,选两个给你参考:
1671年(J.Gregory)
π/4=1-1/3+1/5-1/7+1/9-1/11+....
欧拉(Leonhard Euler)
π^2/8=1+1/3^2+1/5^2+1/7^2+.....
我想,你如果能编程,也可以自己来计算几十位,甚至更多.