做BD⊥AC,交AC于D,则AD=AB×cos30°=58×√3/2=29√3㎝
BD=AB×sin30°=58×(1/2)=29㎝
CD=AC-AD=58-29√3
则BC²=BD²+CD²=29²+(58-29√3)²=841+3364+2523-3364√3=6728-3364√3
若满意请采纳
设BC=a,AB=c=58cm,AC=b=58cm
由余弦定理得
cosA=(b²+c²-a²)/(2bc)
=(58²+58²-a²)/(2×58×58)
=cos30°
=√3/2
解得BC=a=58√(2-√3)cm
=58×(√3-1)/√2cm
=(29√6-29√2)cm