(2008?花都区模拟)如图,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点,(1)求证

2025-04-27 18:59:02
推荐回答(1个)
回答1:

证明:(1)在直三棱柱ABC-A1B1C1
∵底面三边长AC=3,AB=5,BC=4,
∴AC⊥BC,(1分)
又直三棱柱ABC-A1B1C1中AC⊥CC1
且BC∩CC1=C
BC∩CC1?平面BCC1B1
∴AC⊥平面BCC1B1
而BC1?平面BCC1B1
∴AC⊥BC1
(2)设CB1与C1B的交点为E,连接DE,(5分)
∵D是AB的中点,E是BC1的中点,
∴DE∥AC1,(7分)
∵DE?平面CDB1,AC1?平面CDB1
∴AC1∥平面CDB1.(8分)
(3)解:过点C作CF⊥AB于F,连接C1F(9分)
由已知C1C垂直平面ABC,则∠C1FC为二面角C1-AB-C的平面角(11分)
在Rt△ABC中,AC=3,AB=5,BC=4,则CF=

12
5
(12分)
又CC1=AA1=4
∴tan∠C1FC=
5
3
(13分)
∴二面角C1-AB-C的正切值为
5
3
(14分)