解:
因为分少,所以简答!
解:
(x³+y³)/(x²+y²)
=(x+y)(x²+y²-xy)/(x²+y²)
≥(x+y)(x²+y²)/2(x²+y²)
=(x+y)/2
(x³+y³)/(x²+y²)
≤(|x|³+|y|³)/(x²+y²)
≤(|x|+|y|)(x²+y²+2|xy|)/(x²+y²)
=(|x|+|y|)(x+y)²/(x²+y²)
≤2(|x|+|y|)(x+y)²/(x+y)²
=2(|x|+|y|)
∴夹逼准则:
lim (x³+y³)/(x²+y²) =0