1、天亮了,一个个孝顺的雪娃娃安心地睡在了大地妈妈的怀抱中,它们给大地妈妈铺上了厚厚的被子,生怕妈妈冻坏了。
2、雪,还在下着,我伸出手来,接住了一个洁白透亮的小精灵,仔细地观察着它:六只晶莹剔透的小细脚,上面长着细细的小手,在它的中心,有一只明亮的小,十分有神地望着我。
3、晚霞一会儿像一匹骏马在奔驰,一会儿像一头雄狮在怒吼,一会儿像朵朵鲜花绽开……我看着看着,身体感到轻飘飘的,仿佛自己也成了一片晚霞。霞光的范围慢慢地缩小,颜色也逐渐变浅了,紫红变成了深红,深红变成了粉红,又由粉红变成了淡红,最后终于消失了。
4、瞧,白云多漂亮呀!它们的形态千姿百态,有的像又白又甜的棉花糖,真想拿着大吃一口,有的像一匹强壮的大白马,真想骑着它游玩世界,还有的在太阳公公的照耀下,就像一朵红玫瑰花,真想把它送给妈妈。
5、太阳已经转到西山顶上去了。惨淡的光芒,照射着雪地上的血迹,也照射着茫茫的山野,山野间是一片雪白,看不见一点路的痕迹。
1. 种群
地球上任何一种动物或植物都由许多个体组成,这些个体在地表总是占据着一定的地区,我们把占据着一定环境空间的同一种生物的个体集群叫做种群。换句话说,种群就是在一定空间中同种生物的个体群。种群是由个体组成的,但是当生物进入到种群水平时,生物的个体已成为较大和较复杂生物体系中的一部分,此时,作为整体的种群出现了许多不为个体所具有的新属性,如出生率、死亡率、年龄结构、分布格局和某些动物种群独有的社群结构等特征。在自然界,种群是物种存在、物种进化和表达种内关系的基本单位,是生物群落或生态系统的基本组成部分,同时也是生物资源开发、利用和保护的具体对象。
种群个体数目的增加称为种群增长。如果一个单独的种群(在自然界,常常是若干种群的个体生长在一起)在食物和空间充足,并无天敌与疾病以及个体的迁人与迁出等因素存在时,按恒定的瞬时增长率(r)连续地增殖,即世代是重叠时,该种群便表现为指数式增长,即dN/dt=rN。其积分就得到经过时间t后种群的总个体数,可用一条个体数目不断增加的J形曲线来表示(图10-4)。种群如按此方式增长,那么一个细菌经过36小时,完成108个世代后,将繁殖出2107个细菌,可以布满全球一尺厚。达尔文也曾计算过繁殖缓慢的大象的个体。一对大象任其自由繁殖,后代都能成活,750年后将会有19 000 000 头大象的存在。这些显然是一种推算。实际上,这种按生物内在增长能力即生物潜力呈几何级数或指数方式的增长在自然界是不可能实现的。因为限制生物增长的生物因素和非生物因素即环境阻力的存在(如有限的生存空间和食物,种内和种间竞争,天故的捕食,疾病和不良气候条件等)和生物的年龄变化等必然影响到种群的出生率和存活数目,从而降低种群的实际增长率,使个体数目不可能无限地增长下去。相反,通常是当种群侵入到一个新地区后,开始时增长较快,随后逐渐变慢,最后稳定在一定水平上,或者在这一水平上下波动。此时个体数目接近或达到环境最大容量或环境的最大负荷量(K)。在这种有限制的环境条件下,种群的增长可用逻辑斯谛方程表示:dN/dt=rN(K-N/K)=rN(1-N/K),1-N/K 代表环境阻力。增长曲线表现为S形。一般认为,这种增长动态是自然种群最普遍的形式。
种群动态与调节机能的研究,对于管理和保护生物资源,以及对于了解自然界的生态平衡都具有重要意义。
2. 生物群落
① 群落的概念
在自然界,任何生物物种都不是孤立地生存,总有许多其他生物种与之同群共居,形成一个完整的生物群休。正如种群是个体的集合体一样,群落是种群的集合体,是一个比种群更复杂更高一级的生命组织层次。群落因成分中生物类别不同而有不同的名称。如果在一定地段上,共同生活在一起的植物种以多种多样的方式彼此发生作用,形成一种有规律的组合,这种多植物种的组合就叫做植物群落。它是不同种类植物松散地组织起来的单位。河漫滩上的一块草地,山坡上的一片松林,湖岸浅水处的一片芦苇丛,乃至一块人工管理的稻田,都是植物群落。其类型繁杂多样,其面积差别悬殊,彼此之间的边界明显或不明显。
动物同植物一样,也常常是以群落的形式组合在一起共同生活着。只是由于动物的流动性很大,群落组合更松散,在科学研究上多以种群为对象而很少应用“动物群落”一词。
植物群落是动物的食物资源库、隐蔽所和繁殖生息的地方。所以地球上没有毫无动物栖居的植物群落,也没有不与植物群落发生关系的动物群落。在动植物生活的地方,甚至其躯体上都布满着微生物的群体。因此,在一定地段的自然环境条件下,由彼此在发展中有密切联系的动物、植物和微生物有规律地组合成的生物群体,叫做生物群落。每个生物群落都是自然界真实存在的一个整体单位,占据着生物圈的一定地区,具有一定的组成和结构,在物质和能量交换中执行着独特的功能。生物群落中以陆地植物群落的外貌最为突出,在生物群落的结构和功能中所起作用最大。一个地区全部植物群落的总体,叫做该地区的植被。如北京的植被、秦岭山地的植被都是指该地区范围内分布的全部植物群落。
地球上所存在的各种自然群落,如森林、草原、荒漠、沼泽等都是亿万年来地球历史发展的产物,是通过长期自然选择在一定地区产生的最合理、最有效的生物群体。人们研究它,可从中得到启示,以便更合理地创造人工群落,改造自然群落。
② 生物群落的动态
生物群落同其他自然现象一样是一个动态系统,处在不断发展变化之中。生物群落作为一个由多种有机体构成的生命系统,既有季相变化和年变化,又有群落的演替和演化等。其中,以群落的季节性变化和演替比较重要。 在气候季节变化明显的地区,植物在不同季节通过发芽、展叶、开花、结果和休眠等不同的物候阶段,使整个群落在各季表现出不同的外貌,叫做群落的季相。不同气候带群落季相表现很不一致,在终年炎热多雨的热带雨林变化很不明显;温带地区四季分明,变化最为突出。 群落的季节性变化除季相更替外,群落的生产力、植物的营养成分和群落的内部环境也都相应地发生周期性变化。
由于气候变迁、洪水、野火、山崩、动物的活动和植物繁殖体的迁移散布,以及因群落本身的活动改变了内部环境等自然原因,或者由于人类活动的结果,可使群落发生根本性的变化。这种在一定地段上一个群落被性质不同的另一个群落所替代的现象叫做演替。例如,在某一林区,一片土地上的树木被砍伐后辟为农田,种植作物;以后这块农田被废弃,在无外来因素干扰的情况下,就发育出一系列植物,并且依次替代。首先出现的是一年生杂草群落;然后是多年生杂类草与禾草组成的群落;再后是灌木群落和乔木的出现,直到一片森林再度形成,替代现象基本结束。在这里,原来的森林群落被农业植物群落所代替,就其发生原因而论是一种人为演替。此后,在撩荒地上一系列天然植物群落相继出现,主要是由于植物之间和植物与环境之间的相互作用,以及这种相互作用的不断变化而引起的自然演替过程。
群落的演替按发生的基质状况可分为两类。发生于以前没有植被覆盖过的原生裸地上的群落演替叫做原生演替。原来有过植被覆盖,以后由于某种原因原有植被消灭了,这样的裸地叫做次生裸地。土壤中常常还保留着植物的种子或其他繁殖体,发生在这种裸地上的演替称做次生演替。上述出现于撩荒地上的演替即属此类。原生演替如果是发生在森林气候环境下,其演替系列可概括为:裸岩-地衣群落-苔藓群落-草本群落-灌木群落-乔木群落。如果发生在淡水湖泊里,演替系列为:开敞水体-沉水植物群落-浮叶植物群落-挺水植物群落-湿生植物群落-陆地中生或旱生植物群落(图10-5)。从图中可以看出,与植物群落发生演替的同时,栖居于其中的动物种群也发生更替,每一阶段的动物群都与一定的植物群落类型相联系。
群落演替还因其发展方向不同分为顺行演替与逆行演替。当发生于裸露地面或撩芜地面的群落经过一系列发展变化,总趋势朝向逐渐符合于当地主要生态环境条件(如气候和土壤)的演替过程,叫做顺行演替。顺行演替的结果,群落的特征一般表现为生物种类由少到多,结构由简单到复杂,由不稳定变得比较稳定。最后会发展成为与当地环境条件协调一致的、结构稳定的顶极群落,整个群落的物质与能量的输入和输出保持相对平衡。
群落由于受到干扰破坏而驱使演替过程倒退,即逆行演替。强度放牧下的草原,因适口性强的牧草逐渐减少或消失,品质低劣或有毒和有刺的植物得以繁生蔓延,草群总盖度下降,甚至出现裸露地面。草原发生的这种退化现象即是逆行演替。河流中上游地区的森林或其他类型的植被被过度砍伐,如遇大雨、河水暴涨造成危害,是植被逆行演替带来的恶果。 群落演替的速度随具体条件不同而有差异。一般在演替系列的早期阶段比较迅速,群落稳定性差;后期演替速度逐渐变慢;最后阶段的群落保持相对稳定的状态。次生演替比原生演替快些。 研究群落的演替对于认识它们的性质,预测未来发展的趋向,以及合理利用、改造和保护等方面都有重要意义。
3. 生态系统
在自然界,任何生物群落总是通过连续的能量-物质交换与其生存的自然环境不可分割地相互联系和相互作用着,共同形成统一的整体,这样的生态功能单位就是生态系统。
按照生态系统的上述定义,我们既可以从类型上去理解,例如森林、草原、荒漠、冻原、沼泽、河流、海洋、湖泊、农田和城市等;也可以从区域上理解它,例如分布有森林、灌丛、草地和溪流的一个山地地区或是包含着农田、人工林、草地、河流、池塘和村落与城镇的一片平原地区都是生态系统。生态系统是地球表层的基本组成单位,它的面积大小很悬殊,从整个最大的生物圈,到最小的一滴水及其中的微生物。所以整个地球表层就是由大大小小各种不同的生态系统镶嵌而成。
作为一个开放系统,生态系统并不是完全被动地接受环境的影响,在正常情况下的一定限度内,其本身都具有反馈机能,使它能够自动调节,逐渐修复与调整因外界干扰而受到的损伤,维持正常的结构与功能,保持其相对平衡状态。因此,它又是一个控制系统或反馈系统。
生态系统概念的提出,使我们对生命自然界的认识提到了更高一级水平。它的研究为我们观察分析复杂的自然界提供了有力的手段,并且成为解决现代人类所面临的环境污染、人口增长和自然资源的利用与保护等重大问题的理论基础之一。
1. 种群
地球上任何一种动物或植物都由许多个体组成,这些个体在地表总是占据着一定的地区,我们把占据着一定环境空间的同一种生物的个体集群叫做种群。换句话说,种群就是在一定空间中同种生物的个体群。种群是由个体组成的,但是当生物进入到种群水平时,生物的个体已成为较大和较复杂生物体系中的一部分,此时,作为整体的种群出现了许多不为个体所具有的新属性,如出生率、死亡率、年龄结构、分布格局和某些动物种群独有的社群结构等特征。在自然界,种群是物种存在、物种进化和表达种内关系的基本单位,是生物群落或生态系统的基本组成部分,同时也是生物资源开发、利用和保护的具体对象。
彩虹释义
[编辑本段]
彩虹(Rainbow)是气象中的一种光学现象。当阳光照射到半空中的雨点,光线被折射及反射,在天空上形成拱形的七彩的光谱。彩虹七彩颜色,从外至内分别为:红、橙、黄、绿、蓝、靛、紫。
彩虹是一种自然现象,是由于阳光射到空气的水滴里,发生光的反射和折射造成的。
彩虹形成原因
[编辑本段]
彩虹是因为阳光射到空中接近圆型的小水滴,造成色散及反射而成。阳光射入水滴时会同时以不同角度入射,在水滴内亦以不同的角度反射。当中以40至42度的反射最为强烈,造成我们所见到的彩虹。造成这种反射时,阳光进入水滴,先折射一次,然后在水滴的背面反射,最后离开水滴时再折射一次。因为水对光有色散的作用,不同波长的光的折射率有所不同,蓝光的折射角度比红光大。由于光在水滴内被反射,所以观察者看见的光谱是倒过来,红光在最上方,其他颜色在下。
其实只要空气中有水滴,而阳光正在观察者的背后以低角度照射,便可能产生可以观察到的彩虹现象。彩虹最常在下午,雨后刚转天晴时出现。这时空气内尘埃少而充满小水滴,天空的一边因为仍有雨云而较暗。而观察者头上或背后已没有云的遮挡而可见阳光,这样彩虹便会较容易被看到。另一个经常可见到彩虹的地方是瀑布附近。在晴朗的天气下背对阳光在空中洒水或喷洒水雾,亦可以人工制造彩虹。
空气里水滴的大小,决定了彩虹的色彩鲜艳程度和宽窄。空气中的水滴大,虹就鲜艳,也比较窄;反之,水滴小,虹色就淡,也比较宽。我们面对着太阳是看不到彩虹的,只有背着太阳才能看到彩虹,所以早晨的彩虹出现在西方,黄昏的彩虹总在东方出现。可我们看不见,只有乘飞机从高空向下看,才能见到。虹的出现与当时天气变化相联系,一般我们从虹出现在天空中的位置可以推测当时将出现晴天或雨天。东方出现虹时,本地是不大容易下雨的,而西方出现虹时,本地下雨的可能性却很大。
彩虹的明显程度,取决于空气中小水滴的大小,小水滴体积越大,形成的彩虹越鲜亮,小水滴体积越小,形成的彩虹就不明显。一般冬天的气温较低,在空中不容易存在小水滴,下阵雨的机会也少,所以冬天一般不会有彩虹出现。
彩虹其实并非出现在半空中的特定位置。它是观察者看见的一种光学现象,彩虹看起来的所在位置,会随著观察者而改变。当观察者看到彩虹时,它的位置必定是在太阳的相反方向。彩虹的拱以内的中央,其实是被水滴反射,放大了的太阳影像。所以彩虹以内的天空比彩虹以外的要亮。彩虹拱形的正中心位置,刚好是观察者头部影子的方向,虹的本身则在观察者头部的影子与眼睛一线以上40°至42°的位置。因此当太阳在空中高于42度时,彩虹的位置将在地平线以下而不可见。这亦是为甚么彩虹很少在中午出现的原因。
彩虹由一端至另一端,横跨84°。以一般的35mm照相机,需要焦距为19mm以下的广角镜头才可以用单格把整条彩虹拍下。倘若在飞机上,会看见彩虹是原整的圆形而不是拱形,而圆形彩虹的正中心则是飞机行进的方向。
晚虹是一种罕见的现象,在月光强烈的晚上可能出现。由于人类视觉在晚间低光线的情况下难以分办颜色,故此晚虹看起来好像是全白色。
双彩虹很多时候会见到两条彩虹同时出现,在平常的彩虹外边出现同心,但较暗的副虹(又称霓)。副虹是阳光在水滴中经两次反射而成。当阳光经过水滴时,它会被折射、反射后再折射出来。在水滴内经过一次反射的光缐,便形成我们常见的彩虹(主虹)。若光线在水滴内进行了两次反射,便会产生第二道彩虹(霓)。霓的颜色排列次序跟主虹是相反的。由于每次反射均会损失一些光能量,因此霓的光亮度亦较弱。两次反射最强烈的反射角出现在50°至53°,所以副虹位置在主虹之外。因为有两次的反射,副虹的颜色次序跟主虹反转,外侧为蓝色,内侧为红色。副虹其实一定跟随主虹存在,只是因为它的光线强度较低,所以有时不被肉眼察觉而已。苏格兰上空的双重彩虹1307年时欧洲已有人提出彩虹是由水滴对阳光的折射及反射而造成。笛卡尔在1637年发现水滴的大小不会影响光线的折射。他以玻璃球注入水来进行实验,得出水对光的折射指数,用数学证明彩虹的主虹是水点内的反射造成,而副虹则是两次反射造成。他准确计算出彩虹的角度,但未能解释彩虹的七彩颜色。后来牛顿以玻璃菱镜展示把太阳光散射成彩色之后,关于彩虹的形成的光学原理全部被发现。
彩虹为什么总是弯曲的
[编辑本段]
原因一:光的波长决定光的弯曲程度
事实上如果条件合适的话,可以看到整圈圆形的彩虹。彩虹的形成是太阳光射向空中的水珠经过折射→反射→折射 后射向我们的眼睛所形成。 不同颜色的太阳光束 经过上述过程形成彩虹的光束与原来光束的偏折角约 180 - 42 = 138度。也就是说,若太阳光与地面水平,则观看彩虹的仰角约为 42度。
想象你看着东边的彩虹,太阳在从背后的西边落下。白色的阳光(彩虹中所有颜色的组合)穿越了大气,向东通过了你的头顶,碰到了从暴风雨落下的水滴。当一道光束碰到了水滴,会有两种可能:一是光可能直接穿透过去,或者更有趣的是,它可能碰到水滴的前缘,在进入时水滴内部产生弯曲,接着从水滴后端反射回来,再从水滴前端离开,往我们这里折射出来。这就是形成彩虹的光。
光穿越水滴时弯曲的程度,端视光的波长(即颜色)而定——红色光的弯曲度最大,橙色光与黄色光次之,依此类推,弯曲最少的是紫色光。
每种颜色各有特定的弯曲角度,阳光中的红色光,折射的角度是42度,蓝色光的折射角度只有40度,所以每种颜色在天空中出现的位置都不同。
若你用一条假想线,连接你的后脑勺和太阳,那么与这条线呈42度夹角的地方,就是红色所在的位置。这些不同的位置勾勒出一个弧。既然蓝色与假想线只呈 40度夹角,所以彩虹上的蓝弧总是在红色的下面。
彩虹之所以为弧型这当然与其形成有着不可分割的关系,同样这也与地球的形状有很大的关系,由于地球表面为一曲面而且还被厚厚的大气所覆盖,在雨后空气中的水含量比平时高,当阳光照射入空气中的小水滴形成了折射,同时由于地球表面的大气层为一弧面从而导致了阳光在表面折射形成了我们所见到的弧形彩虹!
原因二:与地球的形状有很大的关系
由于地球表面是一个曲面并且被厚厚的大气所覆盖,雨后空气中的水含量比平时高,当阳光照射入空气中的小水滴时就形成了折射。同时由于地球表面的大气层为一弧面从而导致了阳光在表面折射形成了我们所见到的弧形彩虹!
给你以下关键词,搜搜吧:
雪、彩虹、雨、雾、冰雹~