(1)在平行四边形ABCD中,连接BD交AC于O,过O作OE∥SB交SD于E,则SB∥面ACE,
O为BD的中点,所以E为SD的中点,
SA⊥底面ABCD,AB=2,AD=1,SB=
,SA=
7
=
(
)2?22
7
,所以SD=
3
=2,
1+(
)2
3
E为SD的中点,所以SE=1,此时满足SB∥面ACE.
(2)因为AB=2,AD=1,∠BAD=120°,所以∠B=60°,三角形ABC为直角三角形,
AC⊥AD,因为SA⊥底面ABCD,所以AC⊥平面SAD,AE?平面SAD,
所以AC⊥AE,SE=3ED=
,ED=3 2
,cos∠SDA=1 2
=AD SD
,1 2
AE=