全等三角形的判定方法是什么?

2024-12-02 05:47:48
推荐回答(5个)
回答1:

1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
由3可推到
4、有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA角角角和SSA(特例:直角三角形为HL,属于SSA)边边角,这两种情况都不能唯一确定三角形的形状。
A是英文角的缩写(angle),S是英文边的缩写(side)。
H是英文斜边的缩写(Hypotenuse),L是英文直角边的缩写(leg)。
6.三条中线(或高、角分线)分别对应相等的两个三角形全等。
[编辑本段]性质
三角形全等的条件:
1、全等三角形的对应角相等。
2、全等三角形的对应边相等
3、全等三角形的对应顶点相等。
4、全等三角形的对应边上的高对应相等。
5、全等三角形的对应角平分线相等。
6、全等三角形的对应中线相等。
7、全等三角形面积相等。
8、全等三角形周长相等。
9、全等三角形可以完全重合。
三角形全等的方法:
1、三边对应相等的两个三角形全等。(SSS)
2、两边和它们的夹角对应相等的两个三角形全等。(SAS)
3、两角和它们的夹边对应相等的两个三角形全等。(ASA)
4、有两角及其一角的对边对应相等的两个三角形全等(AAS)
5、斜边和一条直角边对应相等的两个直角三角形全等。(HL)

回答2:

回答3:

SSS
定义:有三条边对应相等的两个三角形全等
SAS
定义:有两边及其夹角对应相等的两个三角形全等
ASA
定义:有两角及其夹边对应相等的两个三角形全等
AAS
定义:有两角及一角对边对应相等的两个三角形全等
HL
定义:有一条直角边和斜边对应相等的两个三角形全等

回答4:

能够完全重合的两个三角形是全等三角形.判定方法有SSS,SAS,ASA,AAS,HL

回答5:

如果两个直角三角形一直角边,一斜边对应相等那么这两个直角三角形全等