高数概率论与数理统计D(S^2)样本方差的方差怎么算啊?与卡方分布什么关系

2024-11-14 23:24:24
推荐回答(5个)
回答1:

一般情况下求D(S^2)并不容易,但如果总体服从正态分布N(μ,σ^2),则(n-1)S^2/σ^2服从自由度为n-1的卡方分布,从而D[(n-1)S^2/σ^2]=2(n-1),可由此间接求出D(S^2)。

在许多实际情况下,人口的真实差异事先是不知道的,必须以某种方式计算。 当处理非常大的人口时,不可能对人口中的每个物体进行计数,因此必须对人口样本进行计算。样本方差也可以应用于从该分布的样本的连续分布的方差的估计。

扩展资料:

方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。

平方根是一个凹函数,因此引入负偏差(由Jensen不等式),这取决于分布,因此校正样本标准偏差(使用贝塞尔校正)有偏差。 标准偏差的无偏估计是一个技术上涉及的问题,尽管对于使用术语n-1.5的正态分布,形成无偏估计。

方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。

参考资料来源:百度百科——样本方差

回答2:

如果总体服从正态分布N(μ,σ^2),则(n-1)S^2/σ^2服从自由度为n-1的卡方分布,从而D[(n-1)S^2/σ^2]=2(n-1)。

如果给出的是具体几个数值,那么就先求出均值然后根据公式:方差是各个数据与平均数之差的平方的平均数,即 s²=(1/n)[(x1-x_)²+(x2-x_)²+...+(xn-x_)²] ,其中,x表示样本的平均数,n表示样本的数量,xn表示个体,而s²就表示方差。

作为随机变量的函数,样本方差本身就是一个随机变量,研究其分布是很自然的。 在yi是来自正态分布的独立观察的情况下,Cochran定理表明s2服从卡方分布:

扩展资料:

实际上,样本方差可以理解成是对所给总体方差的一个无偏估计。E(S^2)=DX。

n-1的使用称为贝塞尔校正,也用于样本协方差和样本标准偏差(方差平方根)。 平方根是一个凹函数,因此引入负偏差,这取决于分布,因此校正样本标准偏差有偏差。 标准偏差的无偏估计是一个技术上涉及的问题,尽管对于使用术语n-1.5的正态分布,形成无偏估计。

无偏样本方差是函数ƒ(y1,y2)=(y1-y2)2/2的U统计量,这意味着它是通过对群体的两个样本统计平均得到的。

回答3:

一般情况下求D(S^2)并不容易,但如果总体服从正态分布N(μ,σ^2),则(n-1)S^2/σ^2服从自由度为n-1的卡方分布,从而D[(n-1)S^2/σ^2]=2(n-1),可由此间接求出D(S^2)。

回答4:

简单计算一下即可,答案如图所示

回答5:

一般情况下求D(S^2)并不容易,但如果总体服从正态分布N(μ,σ^2),则(n-1)S^2/σ^2服从自由度为n-1的卡方分布,从而D[(n-1)S^2/σ^2]=2(n-1),可由此间接求出D(S^2)。

在许多实际情况下,人口的真实差异事先是不知道的,必须以某种方式计算。 当处理非常大的人口时,不可能对人口中的每个物体进行计数,因此必须对人口样本进行计算。样本方差也可以应用于从该分布的样本的连续分布的方差的估计。