机器学习和模式识别有什么区别?看教材,发现它们的算法都差不多一样啊。。。

2024-12-03 20:49:32
推荐回答(3个)
回答1:

一、方式不同

1、机器学习:是通过计算机用数学技术方法来研究模式的自动处理和判读。

2、模式识别:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

二、研究过程不同

1、机器学习:学习是一项复杂的智能活动,学习过程与推理过程是紧密相连的,按照学习中使用推理的多少,机器学习所采用的策略大体上可分为4种——机械学习、通过传授学习、类比学习和通过事例学习。

2、模式识别:指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。

三、应用前景不同

1、机器学习:继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。现有的计算机系统和人工智能系统没有什么学习能力,至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。

对机器学习的讨论和机器学习研究的进展,必将促使人工智能和整个科学技术的进一步发展 。

2、模式识别:一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容。

参考资料来源:百度百科-模式识别

参考资料来源:百度百科-机器学习

回答2:

先抄点定义:
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
模式识别是指对表征事物或现象的各种形式的信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。它是信息科学和人工智能的重要组成部分,主要应用领域是图像分析与处理、语音识别、声音分类、通信、计算机辅助诊断、数据挖掘等学科。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
机器学习(Machine Learning, ML)研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,它主要使用归纳、综合而不是演绎。
最主要的应用领域有:专家系统、认知模拟、规划和问题求解、数据挖掘、网络信息服务、图象识别、故障诊断、自然语言理解、机器人和博弈等领域。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━

从领域来说,都是人工智能领域的概念,但时间上模式识别较为传统,大概是从1950s开始;而机器学习是大概1980s兴起的。

从内容来看,模式识别是人工智能研究的一部分,主要解决分类问题。而机器学习是人工智能研究目前主要的主题,涉及AI的各个方面。模式识别近些年增添的新理论方法主要都是机器学习方面提出的,所以你看的教材如果主要是介绍算法的,的确多数内容都重合了。但在应用上机器学习更广泛,只不过一般教材对于模式识别之外的内容较为弱化而已。

回答3:

一、方式不同

1、机器学习:是通过计算机用数学技术方法来研究模式的自动处理和判读。

2、模式识别:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

二、研究过程不同

1、机器学习:学习是一项复杂的智能活动,学习过程与推理过程是紧密相连的,按照学习中使用推理的多少,机器学习所采用的策略大体上可分为4种——机械学习、通过传授学习、类比学习和通过事例学习。

2、模式识别:指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。

三、应用前景不同

1、机器学习:继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。现有的计算机系统和人工智能系统没有什么学习能力,至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。

对机器学习的讨论和机器学习研究的进展,必将促使人工智能和整个科学技术的进一步发展 。

2、模式识别:一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容。

参考资料来源:百度百科-模式识别

参考资料来源:百度百科-机器学习