如图所示,在四棱锥S-ABCD中,底面ABCD是直角梯形,SA⊥平面ABCD,且AD∥BC,AB⊥AD,BC=2AD=2,AB=AS=2

2025-04-26 00:46:45
推荐回答(1个)
回答1:

解答:(Ⅰ)证明:∵SA⊥平面ABCD,∴SA⊥BC,
又∵BC⊥AB,∴BC⊥平面SAB,
又SB?平面SAB,∴SB⊥BC.
(2)解:以A为原点,以AD为x轴,AB为y轴,AS为z轴,
建立空间直角坐标系,
由已知得S(0,0,

2
),A(0,0,0),
B(0,
2
,0),C(2,
2
,0),D(0,0,1),
SB
=(0,
2
,?
2
),
BC
=(2,0,0)

设平面SBC的法向量
m
=(x,y,z)

m
?
SB
2
y?
2
z=0
m
?
BC
=2x=0
,取y=1,得
m
=(0,1,1)

AB
=(0,
2
,0)

∴点A到平面SBC的距离d=
|
m
?
AB
|
|
m
|
=
|
2
|