解答:(Ⅰ)证明:∵SA⊥平面ABCD,∴SA⊥BC,
又∵BC⊥AB,∴BC⊥平面SAB,
又SB?平面SAB,∴SB⊥BC.
(2)解:以A为原点,以AD为x轴,AB为y轴,AS为z轴,
建立空间直角坐标系,
由已知得S(0,0,
),A(0,0,0),
2
B(0,
,0),C(2,
2
,0),D(0,0,1),
2
=(0,SB
,?
2
),
2
=(2,0,0),BC
设平面SBC的法向量
=(x,y,z),m
则
,取y=1,得
?m
=SB
y?
2
z=0
2
?m
=2x=0BC
=(0,1,1),m
=(0,AB
,0),
2
∴点A到平面SBC的距离d=
=|
?m
|AB |
|m
|
|
2