4个不同的球放到3个不同盒子,每个盒子至少放1个球,有几种方法

2025-02-24 03:15:58
推荐回答(2个)
回答1:

四个不同的小球全部随意放入三个不同的盒子中,每个盒子最少一个,需要先要从4个球中选2个作为一个元素,有C42种结果,同其他的两个元素在三个位置全排列,根据乘法原理得到结果.
解答:解:由题意知四个不同的小球全部随意放入三个不同的盒子中,
每个盒子最少一个,
首先要从4个球中选2个作为一个元素,有C42种结果,
同其他的两个元素在三个位置全排列有A33
根据分步乘法原理知共有C42A33=6×6=36

回答2:

"先取四个球里的一个放盒子里,有4种"
错误,有12种
因为可以放三个不同的盒子 4*3 =12
12*6 = 72
但是有两个盒子计算了两遍,所以72/2 = 36