设A为m×n矩阵,则线性方程AX=b有解的充分必要条件为R(A,b)=R(A),为什么

2024-12-04 14:35:27
推荐回答(1个)
回答1:

注:由于非齐次线性方程组AX=b有解的充分必要条件是 r(A)=r(A,b)
所以只需证明:r(A) = m 时,必有 r(A)=r(A,b).
证明:因为r(A) = m
所以 A 的行向量组的秩 = m
而A是m×n矩阵
所以 A 的行向量组线性无关.
又由线性无关的向量组添加若干个分量仍线性无关 (这是定理)
所以 (A,b) 的行向量组线性无关
所以 (A,b) 的行向量组的秩 = m
所以 r(A,b) = m = r(A).
故非齐次线性方程组AX=b有解 #
注:r(A)