y'=√sinxy'^2=sinxs=∫(a,b)√1+sinxdx=∫(a,b)√(sinx/2+cosx/2)^2dx=∫(a,b)(sinx/2+cosx/2)dx (此处都取正值)=2∫(a,b)(sinx/2+cosx/2)d(x/2)=2sinx/2-2cosx/2|(a,b)=2sina/2-2sinb/2-2cosa/2+2cosb/2.