如图,在△ABC中,AB=AC,∠BAC=90°,点D为线段BC上(除点B外)一动点,连接AD,以AD为一边且在AD的右侧

2025-04-23 21:12:40
推荐回答(1个)
回答1:

解答:(1)证明:∵AB=AC,∠BAC=90°,
∴AB=AC,∠BAD+∠DAC=90°,
∵四边形ADEF为正方形,
∴AD=AF,∠DAC+∠CAF=90°,
∴∠BAD=∠CAF,
在△BAD和△CAF中,

AB=AC
∠BAD=∠CAF
AD=AF

∴△BAD≌△CAF(SAS),
∴∠ACF=∠B=45°,
∴∠ACB+∠ACF=90°,
∴CF⊥BC;

(2)解:在Rt△ABC中,AC=4
2
,由勾股定理可求得BC=8,
∴CF=BD=8-CD=8-2=6,
过A作AG⊥BC于点G,则GC=4,

∴GD=4-2=2,在Rt△AGD中,可求得AD=2
5

∴EF=AD=2
5

设CP=x,则PF=6-x,
在Rt△CPD中,PD=
CD2+CP2
=
4+x2

在△CPD和△EPF中,
∵∠FCD=∠E,∠DPC=∠EPF,
∴△CPD∽△EPF,
CD
EF
=
PD
PF

2
2
5
=
4+x2
6?x

解得x=1或x=-4(舍去),
∴CP=1.