(2012?厦门)已知:⊙O是△ABC的外接圆,AB为⊙O的直径,弦CD交AB于E,∠BCD=∠BAC.(1)求证:AC=AD;

2025-05-05 06:03:34
推荐回答(1个)
回答1:

证明:(1)连接AD,
∵∠BCD=∠BAC,∠CBE=∠ABC,
∴△CBE∽△ABC,
∴∠BEC=∠BCA=90°,
∴∠CBA=∠ECA,
又∵∠D=∠ABC,
∴∠D=∠ACD,
∴AC=AD.

(2)连接OC,令∠CAB=20°,
∵OA=OC,
∴∠ACO=∠CAB=20°,
∴∠COB=20°+20°=40°,
∴∠OCB=

1
2
(180°-40°)=70°,
∴∠FCO=∠FCB+∠OCB=70°+30°=100°,
故此时FC不是⊙O的切线.
同理,当∠CAB=30°时,FC不一定是⊙O的切线.