(1)证明:如图,连接OE,
∵DE∥OA,
∴∠COA=∠ODE,∠EOA=∠OED,
∵OD=OE,
∴∠ODE=∠OED,
∴∠COA=∠EOA,
又∵OC=OE,OA=OA,
∴△OAC≌△OAE,
∴∠OEA=∠OCA=90°,
∴OE⊥AB,
∴直线AB是⊙O的切线;
(2)解:由(1)知△OAC≌△OAE,
∴AE=AC=1,AB=1+2=3,在直角△ABC中,BC=
=
AB2?AC2
=2
32?12
,
2
∵∠B=∠B,∠BCA=∠BEO,
∴△BOE∽△BAC,
∴
=OE AC
=BE BC
=2 2
2
,
2
2
∴在直角△AOC中,tan∠OAC=
=OC AC
=OE AC
.
2
2