三角形四心的组合的性质证明

2025-04-06 09:58:27
推荐回答(1个)
回答1:

1:
画任意一个三角形ABC,垂心为D,外心为E,设B垂AC于F,
C垂AB于H,做△ABC的外接圆,ABC为三顶点abc为三内角
S为△ABC的面积
由正弦定理AB/sinc=BC/sina=AC/sinb=2R
由图像得∠c=∠BEH
∴EH=Rcosc=AB/(2tanc)
CD=CF/cos∠ACH=BCcosc/(CH/AC)=AC*BC*cosc/CH
AC*BCsinc/2=S=AB*CH/2
代入上式得CD=AB/tanc=2DH
∴命题得证