求不定积分∫√(x^2 2x)⼀xdx

2025-02-24 02:07:45
推荐回答(3个)
回答1:

分母可以写成(x+1)^2 +2
然后套不定积分公式 1/(x^2+a^2)

回答2:

I = ∫√(x^2 + 2x)/xdx
= ∫√[(x+1)^2 - 1]/xdx
Let x+1 = sec(u). Then, x = sec(u) - 1 ; √[(x+1)^2 - 1] = tan(u)
dx = sec(u)tan(u) du
I = ∫sec(u)tan^2(u)/[sec(u)-1] du
= ∫sec(u)(sec(u)+1) du
= tan(u) + ln[sec(u)+tan(u)] + c
= √(x^2 + 2x) + ln|(x+1)+√(x^2 + 2x)| + c

回答3:

如图所示