首先观察sin(a+π/4)=3/5,由于3,4,5是经典勾股数,知道cos是很好求的值.
而要求的值是a+π/4的两倍差π/4,利用和角公式可得.
求解过程:
sin(a+π/4)=3/5=>[cos(a+π/4)]^2=1-(3/5)^2=16/25
得到cos(a+π/4)=4/5或-4/5(以a+π/4的范围判断)
因π/2<a≤3π/2,则3π/4所以-1<=cos(a+π/4)<√2/2<4/5
cos(a+π/4)=-4/5
sin(2a+π/2)=2sin(a+π/4)cos(a+π/4)=-24/25
cos(2a+π/2)=cos^2(a+π/4)-sin^2(a+π/4)=7/25
sin(2a+π/4)=sin(2a+π/2-π/4)=sin(2a+π/4)*cosπ/4-sinπ/4*cos(2a+π/4)
=-24/25*√2/2-√2/2*7/25=-31√2/50
希望对你有所帮助 还望采纳~~