n阶线性齐次微分方程通解个数

是n个还是n+1个?
2025-04-24 03:02:10
推荐回答(5个)
回答1:

由于齐次线性方程组AX=0,其中A是n阶矩阵,r(A)=r<n∴将A施行初等行变换,化成行最简形矩阵,其中A有r个非零行AX=0就有n-r个自由变量每一个自由变量对应一个解,n-r个自由变量对应着n-r个解这n-r个解构成AX=0的基础解系∴基础解系含有n-r个解.

回答2:

n阶齐次线性微分方程的特征方程是一个一元n次方程。根据代数基本定理,任何复系数一元n次多项式 方程在复数域上至少有一根(n≥1),由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。

回答3:

解特征方程就行了 然后代入公式

回答4:

解要么只有零解,要么无穷多个。

回答5:

n阶齐次线性微分方程的特征方程是一个一元n次方程。根据代数基本定理,任何复系数一元n次多项式 方程在复数域上至少有一根(n≥1),由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。所以:
n阶齐次线性微分方程一定有n个线性无关的解。其通解一定要含有n个解。
对于单重根λm,其通解中出现e^(λmx)。
对于多重根λp(假设为k重根),通解中出现x^j*e^(λpx),j=0,1,2,……,k-1。
如果某根λ是复数,可利用欧拉公式化成正余弦的形式。