[1+cos(2θ+30°)]/2+[1-cos(2θ-30°)]/2+sinθcosθ
1+[cos(2θ+30°)-cos(2θ-30°)]/2+sin2θ/2
和差角公式展开:
1+(-sin2θ)/2+sin2θ/2=1
cos²(θ+15°)+sin²(θ-15°)+sin(θ+180°)cos(θ-180°)
=cos²(θ+15°)-1/2+sin²(θ-15°)-1/2+sin(θ+180°)cos(θ-180°)+1
=cos(2θ+30°)/2-cos(2θ-30°)/2+(-sinθ)(-cosθ)+1
={√3/2cos2θ-1/2sin2θ-[√3/2cos2θ+1/2sin2θ]}/2+sin2θ/2+1
=(-sin2θ)/2+sin2θ/2+1
=0+1
=1