(sinA+cosA)²=sin²A+cos²A+2sinAcosA=1+sin2A
(sinA-cosA)²=sin²A+cos²A-2sinAcosA=1-sin2A
∴(sinA+cosA)²+(sinA-cosA)²=2
而sinA+cosA=√2/3,∴2/9+(sinA-cosA)²=2
∴(sinA-cosA)²=16/9
而π/20,cosA<0
∴sinA-cosA>0,∴sinA-cosA=4/3
而sinA+cosA=√2/3,∴sinA=(4+√2)/6,cosA=-(4-√2)/6
∴tanA=sinA/cosA=-(4+√2)/(4-√2)
=-[(4+√2)(4+√2)]/[(4-√2)(4+√2)]
=-(16+8√2+2)/(16-2)
=-(9+4√2)/7
望采纳