设f(x+1)=x눀-1,则f(x)等于

2025-04-25 01:14:02
推荐回答(3个)
回答1:

令t=x+1,则x=t-1
f(x+1)=f(t)=x²-1=(t-1)²-1=t²-2t
所以f(x)=x²-2x

回答2:

f(x+1)=x²-1
=(x+1-1)²-1
=(x+1)²-2(x+1)+1-1
=(x+1)²-2(x+1)
∴f(x)=x²-2x

回答3:

f(x)=x²-2x
解析:
f(x+1)
=x²-1
=(x+1-1)²-1
=(x+1)²-2(x+1)+1-1
=(x+1)²-2(x+1)
∴ f(x)=x²-2x