线性代数怎么学,要多少时间

2025-04-26 17:55:02
推荐回答(2个)
回答1:

  线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。

  坐标满足满足线性方程的点集形成 n 维空间中的一个超平面。n 个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。[1][2]

  线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生了抽象代数,也就出现了若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。 线性代数的理论已被泛化为算子理论。

  线性代数的方法还用在解析几何、工程、物理、自然科学、计算机科学、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。
  线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。

  现代线性代数已经扩展到研究任意或无限维空间。一个维数为n的向量空间叫做n维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。尽管许多人不容易想象n维空间中的向量,这样的向量(即n元组)用来表示数据非常有效。由于作为n元组,向量是n个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。比如,在经济学中可以使用8维向量来表示8个国家的国民生产总值(GNP)。当所有国家的顺序排定之后,比如(中国,美国,英国,法国,德国,西班牙,印度,澳大利亚),可以使用向量(v1, v2, v3, v4, v5, v6, v7, v8)显示这些国家某一年各自的GNP。这里,每个国家的GNP都在各自的位置上。

  作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。一些显著的例子有:不可逆线性映射或矩阵的群,向量空间的线性映射的环。

  线性代数也在数学分析中扮演重要角色,特别在向量分析中描述高阶导数,研究张量积和可交换映射等领域。

  向量空间是在域上定义的,比如实数域或复数域。线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。所有这种变换组成的集合本身也是一个向量空间。如果一个线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。

  我们可以简单地说数学中的线性问题——-那些表现出线性的问题——是最容易被解决的。比如微分学研究很多函数线性近似的问题。在实践中与非线性问题的差异是很重要的。

  线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。这是数学与工程学中最主要的应用之一。

回答2:

线性代数很容易,我原来也觉得很难,后来发现只要你记得书上定律,就好做了。把书上例题看一遍。基本就没啥了。因为他题目不好出,要让你去做的题目无非是一些特殊情况下的。不可能让你做个非常庞大的线性计算。因为线性代数和计算机联系紧密。这样的计算只有计算机在短时间内可以完成