letx= asinudx=acosu dux=0, u=0x=a, u=π/2∫(0->a) x^2.√(a^2-x^2) dx=a^4.∫(0->π/2) (sinu.cosu)^2 du=(1/4)a^4.∫(0->π/2) (sin2u)^2 du=(1/8)a^4.∫(0->π/2) (1-cos4u) du=(1/8)a^4 .[u-(1/4)sin4u]|(0->π/2)=(1/16)a^4.π