定积分问题?

2025-03-25 19:09:50
推荐回答(1个)
回答1:

let
x= asinu
dx=acosu du
x=0, u=0
x=a, u=π/2
∫(0->a) x^2.√(a^2-x^2) dx
=a^4.∫(0->π/2) (sinu.cosu)^2 du
=(1/4)a^4.∫(0->π/2) (sin2u)^2 du
=(1/8)a^4.∫(0->π/2) (1-cos4u) du
=(1/8)a^4 .[u-(1/4)sin4u]|(0->π/2)
=(1/16)a^4.π